Sampling Methods for Random Subspace Domain Adaptation
نویسنده
چکیده
Supervised classification tasks like Sentiment Analysis or text classification need labelled training data. These labels can be difficult to obtain, especially for complicated and ambiguous data like texts. Instead of labelling new data, domain adaptation tries to reuse already labelled data from related tasks as training data. We propose a greedy selection strategy to identify a small subset of data samples that are most suited for domain adaptation. Using these samples the adaptation is done on a subspace in a kernel defined feature space. To make this kernel approach applicable for large scale data sets, we use random Fourier features to approximate kernels by expectations.
منابع مشابه
Image alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملFast sampling from a Gaussian Markov random field using Krylov subspace approaches
Many applications in spatial statistics, geostatistics and image analysis require efficient techniques for sampling from large Gaussian Markov random fields (GMRFs). A suite of methods, based on the Cholesky decomposition, for sampling from GMRFs, sampling conditioned on a set of linear constraints, and computing the likelihood were presented by Rue (2001). In this paper, we present an alternat...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملCombining Bagging, Boosting and Random Subspace Ensembles for Regression Problems
Bagging, boosting and random subspace methods are well known re-sampling ensemble methods that generate and combine a diversity of learners using the same learning algorithm for the base-regressor. In this work, we built an ensemble of bagging, boosting and random subspace methods ensembles with 8 sub-regressors in each one and then an averaging methodology is used for the final prediction. We ...
متن کاملA Hybrid Random Subspace Classifier Fusion Approach for Protein Mass Spectra Classification
Classifier fusion strategies have shown great potential to enhance the performance of pattern recognition systems. There is an agreement among researchers in classifier combination that the major factor for producing better accuracy is the diversity in the classifier team. Re-sampling based approaches like bagging, boosting and random subspace generate multiple models by training a single learn...
متن کامل